
Hidden Markov Models for Speech 
Recognition

Original slides: Bhiksha Raj and Rita Singh

Customized for

ELEC747 Speech Signal Processing

Gil-Jin Jang, KNU



HMMs

• A Hidden Markov Model consists of two components
– A state/transition backbone that specifies how many states there 

are, and how they can follow one another

– A set of probability distributions, one for each state, which 
specifies the distribution of all vectors in that state

Hidden Markov Models

• This can be factored into two separate probabilistic entities
– A probabilistic Markov chain with states and transitions

– A set of data probability distributions, associated with the states

Markov chain

Data distributions



HMMs

HMM assumed to be 

generating data

How an HMM models a process

state 

distributions

state 

sequence

observation

sequence



17 March 2007
HMMs

HMM Parameters

• The topology of the HMM

– No. of states and allowed 

transitions

– E.g. here we have 3 states and 

cannot go from the blue state to 

the red

• The transition probabilities

– Often represented as a matrix as 

here

– Tij is the probability that when in 

state i, the process will move to j

• The probability of beginning at 

a particular state

• The state output distributions
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HMM state output distributions

• The state output distribution represents the distribution of 

data produced from any state

• In the previous lecture we assume the state output 

distribution to be Gaussian

• Albeit largely in a DTW context

• In reality, the distribution of vectors for any state need not 

be Gaussian

 In the most general case it can be arbitrarily complex

 The Gaussian is only a coarse representation of this distribution

• If we model the output distributions of states better, we can 

expect the model to be a better representation of the data
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Gaussian Mixtures

• A Gaussian Mixture is literally a mixture of Gaussians. It is 

a weighted combination of several Gaussian distributions

• v is any data vector. P(v) is the probability given to that vector by the 

Gaussian mixture

• K is the number of Gaussians being mixed

• w
i
is the mixture weight of the ith Gaussian. m

i
is its mean and C

i
is 

its covariance

• The Gaussian mixture distribution is also a distribution

• It is positive everywhere. 

• The total volume under a Gaussian mixture is 1.0.

• Constraint: the mixture weights w
i
must all be positive and sum to 1
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Generating an observation from a 

Gaussian mixture state distribution

First draw the identity of the 

Gaussian from the a priori 

probability distribution of 

Gaussians (mixture weights)

Then draw a vector from

the selected Gaussian
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Gaussian Mixtures

• A Gaussian mixture can represent data 

distributions far better than a simple Gaussian

• The first panel shows how the histogram of an 

unknown random variable is modeled by a 

simple, unimodal Gaussian

• The second panel models the histogram by a 

mixture of two Gaussians

• Caveat: It is hard to know the optimal number 

of Gaussians in a mixture distribution for any 

random variable
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• The parameters of an HMM with Gaussian 

mixture state distributions are:

– p the set of initial state probabilities for all states

– A the matrix of transition probabilities

– A Gaussian mixture distribution for every state in 

the HMM. The Gaussian mixture for the ith state is 

characterized by

• K
i
, the number of Gaussians in the mixture for the ith

state

• The set of mixture weights  wi,j 0<j<Ki

• The set of Gaussian means mi,j 0 <j<Ki

• The set of Covariance matrices Ci,j 0 < j <Ki

HMMs with Gaussian mixture state 

distributions
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Three Basic HMM Problems

• Given an HMM:

– What is the probability that it will generate a 

specific observation sequence

– Given a observation sequence, how do we 

determine which observation was generated 

from which state

• The state segmentation problem

– How do we learn the parameters of the HMM 

from observation sequences 
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HMM assumed to be 

generating data

Precessing through states

state 

sequence

• The process begins at some state (red) here

• From that state, it makes an allowed transition

– To arrive at the same or any other state

• From that state it makes another allowed 

transition

– And so on
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Probability that the HMM will follow a 

particular state sequence

• P(s
1
) is the probability that the process will initially be 

in state s
1

• P(s
i
| s

i
) is the transition probability of moving to state 

s
i
at the next time instant when the system is 

currently in s
i

– Also denoted by Tij earlier

P s s s P s P s s P s s( , , ,...) ( ) ( | ) ( | )...
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HMM assumed to be 

generating data

Generating Observations from States

state 

distributions

state 

sequence

observation

sequence

• At each time it generates an observation from 
the state it is in at that time
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P o o o s s s P o s P o s P o s( , , ,...| , , ,...) ( | ) ( | ) ( | )...
1 2 3 1 2 3 1 1 2 2 3 3



• P(oi | si) is the probability of generating 
observation oi when the system is in state si

Probability that the HMM will generate a 

particular observation sequence given a 

state sequence (state sequence known)

Computed from the Gaussian or Gaussian mixture for state s1
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Probability that the HMM will generate a 

particular state sequence and from it, a 

particular observation sequence
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Probability of Generating an Observation 

Sequence

P o s P o s P o s P s P s s P s s
all possible

state sequences

( | ) ( | ) ( | )... ( ) ( | ) ( | )...
.

.
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P o o o s s s
all possible

state sequences

( , , ,..., , , ,...)
.

.
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

• If only the observation is known, the precise 
state sequence followed to produce it is not 
known

• All possible state sequences must be 
considered
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Computing it Efficiently

• Explicit summing over all state sequences is not 

efficient

– A very large number of possible state sequences

– For long observation sequences it may be intractable

• Fortunately, we have an efficient algorithm for 

this: The forward algorithm

• At each time, for each state compute the total 

probability of all state sequences that generate 

observations until that time and end at that state
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Illustrative Example

• Consider a generic HMM with 5 states and a 

“terminating state”. We wish to find the probability of 

the best state sequence for an observation sequence 

assuming it was generated by this HMM

– P(si) = 1 for state 1 and 0 for others

– The arrows represent transition for which the probability is 

not 0. P(si | si) = aij

– We sometimes also represent the state output probability of 

si  as P(ot | si) = bi(t) for brevity

91
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Diversion: The Trellis

Feature vectors
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• The trellis is a graphical representation of all possible paths through the 

HMM to produce a given observation

– Analogous to the DTW search graph / trellis

• The Y-axis represents HMM states, X axis represents observations

• Every edge in the graph represents a valid transition in the HMM over a 

single time step 

• Every node represents the event of a particular observation being 

generated from a particular state



17 March 2007
HMMs

The Forward Algorithm
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� au(s,t) is the total probability of ALL state 
sequences that end at state s at time t, 
and all observations until xt
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The Forward Algorithm
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(forward recursion)
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� au(s,t) can be recursively computed in terms of 

au(s’,t’), the forward probabilities at time t-1 
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The Forward Algorithm

time
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• In the final observation the alpha at each state gives the 
probability of all state sequences ending at that state

• The total probability of the observation is the sum of the 
alpha values at all states
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Problem 2: The state segmentation problem

• Given only a sequence of observations, 

how do we determine which sequence of 

states was followed in producing it?
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HMM assumed to be 

generating data

States are Hidden

state 

distributions

state 

sequence

observation

sequence

• The observations do not reveal the underlying 
state
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HMM assumed to be 

generating data

The state segmentation problem

state 

distributions

state 

sequence

observation

sequence

• State segmentation: Estimate state sequence 
given observations
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Estimating the State Sequence

• Any number of state sequences could have 

been traversed in producing the observation

– In the worst case every state sequence may have 

produced it

• Solution: Identify the most probable state 

sequence

– The state sequence for which the probability of 

progressing through that sequence and gen    erating 

the observation sequence is maximum

– i.e                                                    is maximumP o o o s s s( , , ,..., , , ,...)
1 2 3 1 2 3


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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 

expensive

• But once again a simple dynamic-programming 

solution is available

• Needed:

P o s P o s P o s P s P s s P s s( | ) ( | ) ( | )... ( ) ( | ) ( | )...
1 1 2 2 3 3 1 2 1 3 2

P o o o s s s( , , ,..., , , ,...)
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Estimating the state sequence

• Once again, exhaustive evaluation is impossibly 

expensive

• But once again a simple dynamic-programming 

solution is available

• Needed:
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The state sequence

• The probability of a state sequence ?,?,?,?,sx,sy

ending at time t is simply the probability 

of ?,?,?,?, sx multiplied by P(ot|sy)P(sy|sx)

• The best state sequence that ends with sx,sy at t 

will have a probability equal to the probability of 

the best state sequence ending at t-1 at sx times 

P(ot|sy)P(sy|sx)

– Since the last term is independent of the state 

sequence leading to s
x

at t-1
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Trellis

time

94

• The graph below shows the set of all possible 
state sequences through this HMM in five time 
intants

t
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The cost of extending a state sequence

time

94

• The cost of extending a state sequence ending 
at sx is only dependent on the transition from sx

to sy, and the observation probability at sy

t

sy

sx
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The cost of extending a state sequence

time

94

• The best path to sy through sx is simply an 

extension of the best path to sx

t

sy

sx
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The Recursion

• The overall best path to sx is an extension 

of the best path to one of the states at the 

previous time

time
t

sy

sx
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The Recursion

• Bestpath prob(sy,t) = 

Best (Bestpath prob(s?,t) * P(sy | s?) * P(ot|sy)) 

time
t

sy

sx
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Finding the best state sequence

• This gives us a simple recursive formulation to find the 

overall best state sequence:

1. The best state sequence X1,i of length 1 ending at state si

is simply si.

– The probability C(X1,i) of X1,i is P(o1 | si) P(si)

2. The best state sequence of length t+1 is simply given by 

– (argmax Xt,i
C(Xt,i)P(ot+1 | sj) P(sj | si)) si

3. The best overall state sequence for an utterance of length 

T is given by 

argmax 
Xt,i sj

C(XT,i)

– The state sequence of length T with the highest overall probability

89
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Finding the best state sequence

• The simple algorithm just presented is called the VITERBI 

algorithm in the literature

– After A.J.Viterbi, who invented this dynamic programming algorithm 

for a completely different purpose: decoding error correction codes!

• The Viterbi algorithm can also be viewed as a breadth-first 

graph search algorithm

– The HMM forms the Y axis of a 2-D plane

• Edge costs of this graph are transition probabilities P(s|s). Node costs 

are P(o|s)

– A linear graph with every node at a time step forms the X axis

– A trellis is a graph formed as the crossproduct of these two graphs

– The Viterbi algorithm finds the best path through this graph

90
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Viterbi Search (contd.)

time
Initial state initialized with path-score = P(s

1
)b

1
(1)

All other states have score 0 since P(s
i
) = 0 for them

92
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Viterbi Search (contd.)

time

State with best path-score

State with path-score < best

State without a valid path-score

P (t)
j

= max [P (t-1) a   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t

93
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Viterbi Search (contd.)

time

94

P (t)
j

= max [P (t-1) a   b  (t)]
i ij ji

Total path-score ending up at state j at time t

State transition probability, i to j

Score for state j, given the input at time t
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94



17 March 2007
HMMs

Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94
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Viterbi Search (contd.)

time

94

THE BEST STATE SEQUENCE IS THE ESTIMATE OF THE STATE
SEQUENCE FOLLOWED IN GENERATING THE OBSERVATION
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Viterbi and DTW

• The Viterbi algorithm is identical to the 

string-matching procedure used for DTW 

that we saw earlier

• It computes an estimate of the state 

sequence followed in producing the 

observation

• It also gives us the probability of the best 

state sequence
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Problem3: Training HMM parameters

• We can compute the probability of an 

observation, and the best state sequence given 

an observation, using the HMM’s parameters

• But where do the HMM parameters come from?

• They must be learned from a collection of 

observation sequences

• We have already seen one technique for training 

HMMs: The segmental K-means procedure
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• The entire segmental K-means 

algorithm:

1. Initialize all parameters

• State means and covariances

• Transition probabilities

• Initial state probabilities

2. Segment all training sequences

3. Reestimate parameters from segmented 

training sequences

4. If not converged, return to 2

Modified segmental K-means AKA Viterbi training
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Segmental K-means

T1 T2 T3 T4

The procedure can be continued until convergence

Convergence is achieved when the total best-alignment error for

all training sequences does not change significantly with further

refinement of the model

Initialize Iterate
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A Better Technique

• The Segmental K-means technique 

uniquely assigns each observation to one 

state

• However, this is only an estimate and may 

be wrong

• A better approach is to take a “soft”

decision

– Assign each observation to every state with a 

probability
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The “probability” of a state

• The probability assigned to any state s, for 

any observation xt is the probability that 

the process was at s when it generated xt

• We want to compute

• We will compute                                    first

– This is the probability that the process visited 

s at time t while producing the entire 

observation
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Probability of Assigning an Observation to a State

• The probability that the HMM was in a particular state s 

when generating the observation sequence is the 

probability that it followed a state sequence that passed 

through s at time t

s

time
t
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Probability of Assigning an Observation to a State

• This can be decomposed into two multiplicative sections

– The section of the lattice leading into state s at time t and the 

section leading out of it

s

time
t
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Probability of Assigning an Observation to a State

• The probability of the red section is the total probability 

of all state sequences ending at state s at time t

– This is simply a(s,t)

– Can be computed using the forward algorithm

s

time
t
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The forward algorithm
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l represents the complete current set of HMM parameters


































































